• Welcome to Ad Optica Website

    AdOptica is a Consortium of two italian companies working in the field
    of telescope and astronomical instruments design and production.

    Sharpen the Universe
  • slidebg2
    Design...
  • slidebg2
    Development...
  • Manufacturing...

About Ad Optica

Microgate and A.D.S. International, togheter with the scientific partners INAF and Politecnico di Milano, have developed the contactless large deformable mirror technology since it was conceived by P.Salinari in 1993. After several successful deployments on the biggest telescopes, the two companies have joint their efforts into the AdOptica consortium, to be prepared for the challenging projects of the ELTs adaptive optics.

The Consortium Members

A.D.S. International

More Info...

Microgate

More Info...

The darkest nights produce the brightest stars

What is Adaptive Optics

Adaptive optics is a technology that allows correcting the image blurring typically caused by the atmospheric turbulence

Adaptive Optics Sample
Adaptive Optics Sample

In its current implementation, the "contactless" adaptive mirror is based on a continuous, thin mirror (~1.6mm) actively controlled in position and shape by a large number of force actuators (voice coil motors). During operation, the thin mirror "levitates" controlled by the electromagnetic field generated by the actuators. There is no mechanical contact between actuators and thin mirror. Each actuator is made by a fixed coil wound on a cold finger and a moving magnet, glued to the rear surface of the thin adaptive mirror. The actuators are fixed to a cold plate that provides cooling and mechanical support. A stiff (~50 mm thick), thermally stable structure (backplate) provides the position reference for the thin mirror.

The gap between backplate and thin mirror is measured by capacitive sensors, co-located with the actuators. Typical operating gap between backplate and deformable mirror is between 40 and 120µm. The adaptive mirror control system is based on custom-designed high speed digital and analog electronics. About 70,000 times every second, the gap of the mirror at each actuator position is read, compared with the desired gap, and a proper actuator force is computed and commanded.
The mirror position and shape is updated at a typical rate of 1 millisecond.

The adaptive mirror concept has several advantages over other conventional adaptive optics layouts for telescopes:
 

  • For most applications, the adaptive secondary can be the only adaptive mirror in the telescope. This allows the reduction of the number of "warm" reflecting surfaces, with great benefit for IR observation, exposure time and transmission efficiency.
  • High actuators stroke allows the correction of large tip-tilt aberrations and also the implementation of IR chopping
  • Force actuators have no intrinsic stiffness, in case of failure of some actuators the system can be operated with minimal performance degradation
  • Force actuators are hysteresis –free  
  • The high accuracy position sensor allow high speed monitoring of the actual wavefront correction  
  • The mirror can be actively "frozen" in a rigid shape and operated as an ordinary secondary  

For more detailed info, please read this paper ("Contactless thin adaptive mirror technology: past, present and future") presented at SPIE 2010 in San Diego.

And for a visual demonstration watch this short video taken from a German documentary broadcasted by n-tv.

Some facts about E-ELT Telescope

39 m Primary Mirror
2,4 m Adaptive M4 Mirror
5316 Contactless actuators
2024 First Light

Know the projects

Read about the current adaptive optics projects

E-ELT

E-ELT

European Extremely Large Telescope

Development of the M4 Adaptive Unit (read more...)

GMT

GMT

Giant Magellan Telescope

Development of Adtive Secondary Mirror (read more...)

Latest News

AdOptica has signed the contract for the final design and construction of the forth adaptive mirror (M4) of the E-ELT Telescope...
Read the Official Announcement from ESO...

Microgate
ADS International
Inaf
OAB
ESO
GMT